Human Machine Interaction and Sensing
What insights about people and technology are needed to better understand the use of sensors in human machine interaction?
To help answer this question, mediaX sponsored six research projects (led by Stanford faculty) exploring new insights into Human-Machine Interaction with a focus on the detection or sensing of human comprehension, emotional states, gesture or touch. The projects were launched in the Spring of 2006 and spanned a wide range of topics, including: affective computing, smart home technologies, design, communication and collaboration, teaching and learning, training, physical therapy and injury prevention, and AR.
The research initiative highlighted projects exploring technologies for emotion detection, real time video capture, gesture recognition, vision based reasoning, machine learning, biofeedback and augmented reality.
Research Initiatives
Andrea Goldsmith: Smart Home Care Network Using Distributed Vision-Based Reasoning
Scott Klemmer: Designing Sensor Based Interactions by Example
Amy Ladd & Jessica Rose: Human Machine Interaction and Sensing of the Golf Swing
The Late Cliff Nass: Revealing and Using Emotion Detection
Andrew Ng: Gestures, Speech and Vision–Towards a Multi-Modal Augmented Reality Human-Robot Interface