Watch mediaX Webinar: Human-Robot Interaction through the Lens of Learning and Control
On May 12, 2020 Dorsa Sadigh, an assistant professor in Computer Science and Electrical Engineering at Stanford University brought her in-depth research and knowledge to mediaX webinar series “Thinking Tools for Wicked Problems”. Machine learning and control theory have made substantial advances in the field of robotics in the past decade. However, there are still many challenges remaining when studying robots that interact with humans. This includes autonomous vehicles that interact with people, service robots working with their users at homes, assistive robots helping disabled bodies, or humans interacting with drones or other autonomous agents in their daily lives. These challenges introduce an opportunity for developing new learning and control algorithms to enable safe and efficient interactive autonomy.
Dorsa discusses a journey in formalizing human-robot interaction. Specifically, she first discusses developing data-efficient techniques to learn computational models of human behavior. She continues with the challenges that arise when agents (including humans and robots) interact with each other. Further, she argues that in many applications, a full computational human model is not necessary for seamless and efficient interaction. Instead, in many collaborative tasks, conventions —low-dimensional shared representations of tasks — is sufficient for capturing the interaction between agents.
Enjoy the highlights of this session.